

COMPUTER SCIENCE STANDARD LEVEL PAPER 1

Thursday 17 November 2011 (afternoon)

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Section A: answer all the questions.
- Section B: answer all the questions.

SECTION A

Answer **all** the questions.

1.	(a)	State one advantage and one disadvantage of communication by <i>electronic mail</i> rather than by telephone.	[2 marks]
	(b)	Outline two possible measures that prevent computers from being affected by <i>viruses</i> , when using electronic mail.	[2 marks]
2.	(a)	State one application that uses <i>robots</i> .	[1 mark]
	(b)	Outline two advantages of using robots rather than manual-based systems.	[2 marks]
3.	A co	ode for representing colours is used, where each colour is stored using 8 bits.	
	(a)	State the number of different colours that can be represented.	[1 mark]
	(b)	The <i>binary</i> representation of a particular colour is shown below.	
		0 0 0 1 1 1 0 0	
		(i) State the <i>decimal</i> representation of this colour. Show all of your working.	[2 marks]
		(ii) State the <i>hexadecimal</i> representation of this colour.	[1 mark]
4.	(a)	Define the term <i>syntax</i> .	[1 mark]
	(b)	Define the term <i>semantics</i> .	[1 mark]
	(c)	Describe, using examples from the code below, how each of the following types of error could occur: <i>syntax error</i> , <i>logical error</i> and <i>run-time error</i> .	
		a = b / c + d	[3 marks]
5.	•	tems analysis, software design and program construction are all stages of the ware life cycle.	
	Out	line two other stages in the software life cycle.	[4 marks]

6. (a) Using computer memory as an example, outline the meaning of the term *volatile*. [2 marks]

(b) Outline the reasons for having both *primary memory* and *secondary memory*. [2 marks]

7. Consider the following program fragment.

```
String name1 = new String("Maria");
String name2 = new String("Maria");

if (name1 == name2)
{ output("TWO NAMES ARE THE SAME"); }

else
{ output("TWO NAMES ARE DIFFERENT"); }

if (name1.equals(name2))
{ output("TWO NAMES ARE THE SAME"); }

else
{ output("TWO NAMES ARE DIFFERENT"); }
```

The following output is produced by this program fragment.

```
TWO NAMES ARE DIFFERENT TWO NAMES ARE THE SAME
```

Explain line by line, how this output is produced.

[4 marks]

8. Outline **two** functions of an *operating system*.

[2 marks]

8811-7013 **Turn over**

SECTION B

Answer all the questions.

9. Consider the following method.

```
public int mystery(int x, int y)
{
   int q = x;
   if (y < x)
   { q = y; }
   return q;
}</pre>
```

(a) (i) Define the term *method signature*.

[1 mark]

(ii) Identify the *parameters* passed to this method.

[1 mark]

(b) Consider the following statements.

```
c = mystery(2, 1);
b = (mystery(1, 2) < c);</pre>
```

(i) State the value of variable c.

[1 mark]

(ii) State the data type and the value of variable b.

[2 marks]

(iii) Deduce the purpose of the method.

[2 marks]

(c) The same class contains the following method.

```
public int two(int i, int j, int k)
{
   return mystery(mystery(i, j), k);
}
```

Explain how the following statement is executed.

```
int a = two(4, 1, 5);
```

[3 marks]

A program accesses a text file on disk. To edit the text the user of the program enters

	write	using a keyboard. The program then amends the text which was read from the file, es the updated file back to disk and produces a printed report of all amendments e to the text file.	
	(a)	Construct a systems flowchart representing this process.	[4 marks]
	The	data on disk can be lost due to various errors.	
	(b)	(i) State two examples of how data can be lost due to human error.	[2 marks]
		(ii) State two examples of how data can be lost other than by human error.	[2 marks]
		(iii) Describe how data lost from disk could be recovered.	[2 marks]
11.	(a)	State two problems associated with the use of images, that have large file sizes, in computer systems.	[2 marks]
	(b)	One photograph is estimated to occupy 2000 KB. Outline the steps needed to calculate the number of gigabytes (GB) required for 50 000 photographs.	[2 marks]
	(c)	Outline one advantage of using <i>data compression</i> software on stored images.	[2 marks]
	(d)	Discuss the ethical considerations linked to the misuse of image processing software.	[4 marks]
12.	_	arage uses a computer system to test whether the amount of exhaust fumes emitted car is at an acceptable level.	
	A se	ensor, used to measure exhaust fumes, is placed in the exhaust pipe.	
	(a)	Outline the processing taking place in this computer system.	[4 marks]
	(b)	Explain why the sensor data needs to be converted before being processed.	[2 marks]
	(c)	Outline three errors that can occur in this system.	[3 marks]
	(d)	Identify one appropriate output device for this system.	[1 mark]

10.